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Quantum maps, adiabatic invariance and the semiclassical limit 

R Scharft 
Dipartimento di Fisica dell’Universit8, Via Celoria 16, 20133 Milano, Italy 

Received 20 May 1988 

Abstract. An exact adiabatic invariance principle for quantum maps acting in an 
(effectively) finite-dimensional Hilbert space is derived and is used to construct effective 
Hamilton operators which generate the corresponding maps. It is shown that for classically 
non-integrable quantum maps these effective Hamilton operators do not possess any smooth 
classical limit even for the nearly integrable case. The equivalence of the effective Hamilton 
operators given by adiabatic switching and by the quantum Campbell-Baker-Hausdorff 
formula is proved. Moreover a diabatic invariance principle is formulated that leads to 
effective Hamilton operators with a smooth classical limit for nearly integrable dynamics 
via ‘slipping over resonances’. These effective Hamiltonians are compared with the Hamil- 
tonians given by the classical Campbell-Baker-Hausdorff formula. It is explained how 
the last integral of quantum maps-the effective Hamilton operator-is destroyed in the 
classical limit. 

1. Introduction 

Kicked Hamiltonian quantum dynamics (or quantum maps) with finite-dimensional 
Hilbert space are integrable even if their classical limit, a kicked classical dynamics, 
is not. The quantum dynamics can be ‘integrated’ by solving the eigenvalue problem 
(i.e. by diagonalisation) which is only an algebraic procedure. The classical counterpart 
of this procedure would be to find a canonical transformation that puts the map in 
normal form locally: after a suitable choice of canonical coordinates (I, c p )  the map 
would then act as a twist map in the vicinity of fixed points ( c p  + cp + w ( I ) ,  I + I). 
(See, for example, Eckhardt (1986) for classical and quantum normal forms.) Generi- 
cally this strategy fails because the construction of the appropriate canonical transfor- 
mation is plagued by resonances in the form of small denominators. Kicked classical 
dynamics are non-integrable generically and no smooth canonical transformation can 
make them look like twist maps, even locally. But there is hope left that the ‘smooth 
parts’ of the phase space, containing only a negligible measure of chaotic trajectories, 
may be smoothly approximated with the help of a perturbative procedure (Izrailev 
and Sokolov 1985). The Campbell-Baker-Hausdorff expansion (Scharf 1988) is a 
recent example. It allows for a straightforward construction of an approximate integral 
of the map. 

As kicked quantum maps with finite-dimensional Hilbert space are integrable the 
question arises whether there exists some adiabatic invariance that allows the com- 
parison of different quantum maps, that evolve smoothly into each other by increasing 
a perturbation parameter adiabatically. For autonomous dynamics, classical as well 
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as quantum, some interesting features of adiabatic switching are well known; for 
example, Berry’s phase accompanying adiabatic changes in quantum systems (Berry 
1984a) and the possibility of adiabatic semiclassical quantisation when Einstein- 
Brillouin-Keller quantisation fails (Reinhardt and Dana 1987). It is known that the 
adiabatic and semiclassical limits do not commute when avoided degeneracies of 
(quasi) energy levels show up in the course of the adiabatic switching (Berry 1983b). 
These avoided degeneracies or avoided level crossings result from tunnelling between 
eigenfunctions that are either ( i )  exponentially localised in phase space leading to a 
tunnel splitting of the order exp(- l /h)  in the semiclassical limit or (ii) delocalised 
along chaotic regions in phase space leading to a much stronger splitting of the order 
hf, which is comparable to the mean level spacing of a system with f degrees of 
freedom. While (i) can happen for all quantum dynamics, (ii) is typical for quantum 
dynamics with a chaotic classical limit showing trajectories that cover appreciable 
parts of the (compact) energy surface. For quantum dynamics with a non-integrable 
classical limit near-degeneracies of the type (ii) are the rule rather than the exception. 
Therefore it is a big surprise that adiabatic semiclassical quantisation works so well 
for these dynamics. A possible explanation is that if the adiabatic process is slow 
compared to the frequencies occurring in the dynamics but fast enough to ‘slip over’ 
the chaotic regions then the non-adiabatic influence of the chaos is negligible (Berry 
1984b) and semiclassical quantisation still gives good results (Reinhardt and Dana 
1987). The question arises as to what corresponds to the slipping over narrow classical 
chaotic regions in the case of switching of a quantum dynamics. It will be shown to 
be jumping over avoided level crossings. 

Adiabatic switching was used in investigating a kicked classical dynamics, the 
standard map (Dana and Reinhardt 1987). It was shown up to second order in the 
kicking parameter that tori adiabatically evolving out of KAM tori are K A M  tori, too. 
As the map is area preserving, even during the adiabatic process, families of KAM tori 
with the same action are constructed. A semiclassical quantisation procedure follows 
straightforwardly. 

In this paper I will show that there exists an exact adiabatic principle for kicked 
quantum maps with finite-dimensional Hilbert space (or a finite-dimensional part of 
the Hilbert space being of practical relevance for physical initial conditions): it is 
possible to generate the eigenstates of one quantum map out of the eigenstates of 
another one by adiabatic switching between the two maps and acting on the initial 
eigenstates with the corresponding propagators successively. This adiabatic switching 
is equivalent to analytical continuation of the quasienergies and eigenstates of the 
kicked dynamics upon increasing a real perturbation parameter (for example, the kick 
strength). Moreover this is shown to be equivalent to constructing an effective Hamilton 
operator for the kicked quantum dynamics with the help of the Campbell-Baker- 
Hausdorff formula (Scharf 1988). As soon as avoided level crossings show up in the 
spectra the so-constructed effective Hamilton operators do not possess a smooth 
classical limit. The mentioned slipping over the chaotic regions in the classical case 
of adiabatic switching is shown to have its quantum analogue in jumping over avoided 
level crossings (Noid eta1 1983) leading now to effective Hamilton operators that do 
possess smooth (approximate) effective Hamiltonians as their classical limit in the case 
of nearly integrable maps. This non-adiabatic switching (which will be called diabatic 
in the following) with jumping over avoided level crossings gives reasonable results 
for eigenvalues and eigenvectors of the unitary propagator of the quantum map only 
far away from the avoided level crossings. A necessary condition for that is that the 
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level splitting of the near-degeneracies is much smaller than the mean level spacing. 
As soon as a finite part of the eigenfunctions are coupled strongly by the kick and 
therefore show strong level repulsion the jumping over fails. This is just the case for 
kicked dynamics with a strongly non-integrable classical limit. Their spectra show 
level spacings following one of three universal distributions with linear, quadratic or 
quartic level repulsion (depending on their antiunitary symmetries) on a scale of the 
mean level spacing (Robnik and Berry 1986, Scharf et al 1988). 

As the exact adiabatic switching presupposes a switching frequency small compared 
to all frequencies occurring in the quantum map, problems show up especially for 
weakly perturbed maps with a nearly integrable classical limit. As already mentioned 
in this case quasienergies can come very close (AI3 - exp(-l/h))  leading to extremely 
small frequencies. In contrast to that the adiabatic switching of the classical map 
works especially well in the nearly integrable case as does the diabatic switching of 
the quantum map. In practical calculations for the quantum map one always does 
diabatic switching, not taking into account the exponentially small near-degeneracies 
but jumping over them. 

There are two t imesdes  for the changing of the parameters that must be well 
separated in the case of successfully applying diabatic switching. The changing of the 
parameters must be slow enough to be adiabatic in the smooth regions of the classical 
phase space or to follow the eigenvalues and eigenvectors, changing slowly with the 
parameters far away from avoided level crossings. But on the other hand it must be 
fast enough to slip over narrow chaotic regions or avoided level crossings, respectively, 
to minimise their (non-adiabatic) influence. 

2. Level dynamics and analytic continuation 

Following an idea of Pechukas (1983) and Yukawa (1985) I write the equations of 
motion for the eigenvectors and eigenvalues of a perturbed quantum map with respect 
to the perturbation parameter K. The unitary operator that generates the quantum 
map will be chosen in the form 

U ( K )  = U ( 0 )  exp(iKV/h) = exp(iH,,/h) exp(iKV/h) (2.1) 
with the parts U ( 0 )  and exp(iKV/h) generating maps which possess integrable classical 
limits. K is a real perturbation parameter and V the perturbation potential. U ( K )  is 
acting in a d-dimensional Hilbert space. The eigenvalue problem of U ( K )  will be 
written as 

U(K)I(Pn ( K  )) = exp(icpn ( K  ))I (Pn  ( K  )) n = l , .  . ., d. (2.2) 
The change of cp,(K) and I q , ( K ) )  with K can be written in the form of equations of 
motion for an integrable many-particle system on a circle with repulsive two-particle 
interactions and internal degrees of freedom. It is conveniently called ‘generalised 
Sutherland-Moser dynamics’ (KuS et a1 1987, Nakamura and Mikeska 1987). First 
we look at the change of eigenvectors and eigenvalues upon increasing K, which will 
from now on be called level dynamics: 

1 %  ( K  + )) = 1 %  ( K  )) + SKI $n ( K  )) + 0 ( 6 K 2 )  

(2.3) 
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with V,,,(K)=(cp,(K)lVIcp,(K)). Starting at Ko=O equation (2.3) can be used to 
determine the IQ,, ( K ) )  in a given representation; for example, the one spanned by the 
states lcpn(K0)). For non-vanishing couplings Vm,,(K) in the vicinity of a near- 
degeneracy qm = Q,, the resonant denominator in (2.3) ultimately leads to a repulsion 
of the eigenphases and inhibits crossing: degeneracies are avoided generically (Berry 
1985). 

As one of the main objectives of this paper is to construct an effective Hamiltonian 
Heff(K) with the property 

U ( K 1 = exp[ (i/ 1 H e f d  K 11 (2.4) 

the first question is how to express Heff(K + S K )  in terms of Heff(K) and V up to first 
order in SK with the help of the level dynamics. Using (2.3) we write 

where HC denotes the Hermitian conjugate. Finally we get up to order S K :  

For n = m the second term should be replaced by its limit for +,, + pm, i.e. by iSKVnn(K). 
Integration of the level dynamics (2.3) up to a given K gives the same result as 
diagonalising U ( K ) .  Construction of Heff(K) with the help of (2.6) means continuation 
of the phases Q,,, which are then no longer confined to the interval [0,27r). This has 
important consequences for the spectrum of the effective Hamilton operator. For an 
example look at the unitary operator exp(iKJ,), J ,  denoting the z component of the 
angular momentum operator J with the eigenstates Ij, m) ( m  = -j, - j+  1,. . . , j ) :  
J,\j, m) = m /  j ,  m) and J21 j, m )  = j ( j  + 1)1 j ,  m). Upon increasing K the eigenphases 
(modulo 2 ~ )  of U ( K )  intersect and continuation of the spectrum with the help of 
level dynamics leads to the right pieff( K ) :  

Het4 K 1 = hKJz h = O( 1/ j ) .  (2.7) 

But look at the slightly different unitary operator 

U ( K ,  E )  =exp(isH0/h) exp(iKJz) (2.8) 

with Ho being a non-linear function of the J components and [pio,  J,] # 0 (for example: 
pio = h(J,  + J:/ j ) ) ,  and E arbitrarily small but positive. Now the quantum map given 
by U ( K ,  E )  does not possess an integrable classical limit as numerical evidence shows. 
That means for E > O  and K > O  there does not exist an exact smooth phase-space 
invariant (although there might be a good approximate invariant for small enough E ) .  

Conservation of J 2  leads to a two-dimensional phase space in the form of a sphere 
with action z = cos 0 and angle variable Q (e, cp denoting polar and azimuthal angle, 



Quantum maps and adiabatic invariance 4137 

respectively) (Haake and Shepelyansky 1988). An additional invariant would imply 
the integrability of the classical map. In contrast to that the quantum map always 
possesses an additional integral, Heff. Consequently He,, cannot possess a globally 
smooth classical limit in the classically non-integrable case. 

For E > 0 upon increasing K the eigenvalues exp(icp,( K ) )  of U( K )  move around 
on the unit circle and repel each other as (2.3) shows because of the now non-vanishing 
couplings Vmn. In addition to that there is no mean rotation of the phases upon 
increasing K as the trace of J, vanishes. Therefore all phases cp,,(K) are clamped to 
the interval (-2n-, 2 ~ )  for arbitrary K,  because if one phase moves further than i 2 ~  
it has to push all other phases in positive or negative direction thereby leading to a 
non-vanishing mean rotation of the phases. Continuation of the phases therefore leads 
in the limit E + 0' to an He,,( K, O f )  of the form 

J 
Heff= h[KJz(mod4n-)]= h Ij, m)( j ,  ml[Km(mod4n-)]. (2.9) 

m=-- I  

Noting that h = O(l / j )  equation (2.9) leads to a vanishing classical limit of He,, in 
strong contrast to (2.7). Moreover (2.9) shows strong relative oscillations in the 
semiclassical limit. Expressing the projector Ij, m)( j ,  ml in the form 

(2.10) 

shows that He, can be written as a polynomial in J, of the order 2j. The semiclassical 
limit of the scaled h vanishes typically on a number of circles (z = cos 6 = constant) 
that is of O ( j ) ,  implying the non-existence of a smooth classical limit. 

3. Level dynamics and the Campbell-Baker-Hausdorff formula 

With the help of the level dynamics it is easy to show that the Campbell-Baker- 
Hausdoe  (CBH) formula (Scharf 1988) for non-degenerate kicked quantum systems 
with finite-dimensional Hilbert space converges. This is important because kicked 
dynamics are generically non-integrable in the classical limit (see Berry et al 1979) 
and their classical CBH expansion cannot converge in the non-integrable case but only 
gives asymptotic results near K = O  (see Scharf 1988). How this failure of the CBH 
expansion in the classical limit can be understood and why it is the best that can 
happen will be explained in the next sections. 

In a previous paper (Scharf 1988) it was shown that Heff(K) can be written with 
the help of the CBH formula 

H,,-,-(K)=H,+K (3.1) 

The function g(z)  = ln(z)/(z - 1) is analytic near z = 1 and has the Taylor expansion 
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9 and f i0  denoting adjoint operators acting on operators A like V and Ho as CA= 
[ V, A]  = V A  - AV. It easily follows that 

exp( -$ KO) exp( -$ fro). 
= exp( -$ K V )  exp( --+ H o ) A  exp( Ho)  exp( V )  

(3.3) 
i 

= exp( - fief,-( K )) A. 

As a consequence of (3.1) we have with the substitution s = r (  1 + S K I K ) :  

Herr( K + S K )  = Ho+ K jo't8K'K dr g [  exp( --: s K C )  exp( -$ go)] V 

l + S K / K  

= H e f f ( K ) + K  I, dsg[exp(-:sK?) exp(- i f io)]V.  (3.4) 

Up to order SK we get 

H e r f ( K + S K ) = H e f f ( K ) + S K g  (3.5)  

Using the definition of g ( z )  we can finally show up to order SK 

( p m  ( K  ) I  H e d K  + SK )I ( ~ n  ( K  )) 

Comparison with the level dynamical result (2.6) shows that both are identical. The 
CBH formula therefore gives the correct Heff(  K )  as long as no degeneracies of the form 
(P, = p m  for n # m and V,, # 0 occur. Otherwise it might happen that no well defined 
H e f r ( K )  exists (see Scharf 1988). Leaving aside the case of exact degeneracy the 
quantum CBH expansion for finite-dimensional Hilbert space therefore converges to 
the correct effective Hamilton operator. 

4. Adiabatic invariance for kicked quantum dynamics 

Dana and Reinhardt (1987) have shown that the idea of adiabatic switching of a 
perturbation to find adiabatic invariants works quite well for the near-integrable 
standard map. For K << 1 they proved up to second order in K that an exact invariant 
torus of given action coincides with the one constructed via adiabatic switching. For 
K = 1 occurrence of global chaos and disappearance of the last KAM torus finally 
destroys adiabatic invariance. Then the two above-mentioned conditions, i.e. to slip 
over separatrices or chaotic regions quickly but to change K slowly enough (adiabati- 
cally) compared with the intrinsic frequencies of the dynamics, cannot be fulfilled at 
the same time. 

First I show that for kicked quantum dynamics with (effectively) finite-dimensional 
Hilbert space there is an exact adiabatic invariance. This is intuitive because finite- 
dimensional (or infinite-dimensional but localised) kicked quantum dynamics are 
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‘integrable’, as was mentioned before. Their level dynamics is completely integrable 
(Wojciechowski 1985, KuS 1988) and as long as no degeneracies occur the classical 
adiabatic principle (Arnol’d 1978) should hold for the level dynamics. 

Starting with the exact eigenstate lcp,(K)) of U ( K )  adiabatic switching from K to 
K + 6K means the generation of a state vector 

for some N >> 1, acting with the s = N term in the product on the state vector first. 
U ( K ) - N  has been added for convenience to get rid of a large dynamical phase factor. 
Up to order 6K we get with the help of (2.1) 

(cp,,(K)I@,,(K)) = exp[fiNV,,GK/ h ]  + 0 ( S K 2 ) .  

This should be compared with the result (2.3) of the level dynamics 

(cpn(K)Icpn(K+SK))= 1+0(6K’). 

For n # m and pn # cp, equation (4.3) gives 

For N >> I sin[N(cp, - cpm)/2] sin[(cp, -pnI)/2]-’/ the second term in (4.6) can be drop- 
ped and the result is in accordance with the level-dynamical one 

(cpm(K)lcpn(K +SKI) = iSKV,,h-’{exp[i(cp, - cp,)] - I}-’. (4.7) 

Besides an unimportant phase factor the state vectors I@, , (K) )  and Ipn( K + 6 K ) )  are 
equal up to terms of order SK as long as the mentioned conditions on N16Kl and N 
are fulfilled. Then adiabatic switching from K to K + A K  with AK of the order 1 
replacing the small 6K in (4.1) is nothing else but numerical integration of the level 
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dynamics. The errors can be made as small as one likes by taking large enough N as 
long as no degeneracies occur (9, f q, for V,,, f 0). In this case the adiabatic principle 
for kicked quantum systems is exact: 

5. The semiclassical limit and the jumping over resonances 

As the simple near-integrable example in § 2 has illustrated, the continuation of the 
eigenphases does not lead to reasonable effective Hamilton operators as soon as (even 
exponentially small) level repulsion appears. If the strength of the level repulsion is 
so small that colliding levels can come orders of magnitude closer to each other than 
the mean level spacing then the correct choice of the quasienergies h q  is only achieved 
by jumping over the near-degeneracies (see figure 1) such that lim,,,+ q( K,  E )  = q( K, 0) 
outside a small region around the avoided level crossing. For K far away from a 
near-degeneracy the two eigenstates involved have decoupled again and  it is obvious 
that the physical successors of the initially decoupled states are then given not by 
analytic continuation but by jumping over the region of strong coupling (Noid et a1 
1983). As long as the states decouple sufficiently before they are involved in new 
avoided level crossings with other states it is possible to follow the fate of each state 
upon increasing the perturbation parameter K as if it did not take part in couplings 
with other states. If the state carried some good quantum numbers initially at K = 0 
it is natural to attach the same quantum numbers to its successor at arbitrary K as 
long as K stays well outside the coupling regions. But as soon as these coupling 
regions or resonances start to overlap it is no longer possible to find a successor for 
each state unambiguously and the ‘near-good’ quantum numbers begin to vanish in 
the haze. In the case of quantum maps with one near-integral in the classical limit 
(the energy) at best, it now becomes clear how this integral can be destroyed already 
in the semiclassical limit, although an  effective Hamilton operator, gained via continu- 
ation of the eigenphases, always exists (see figure 2 ) .  Only the eigenphases q, = 0 ( 1 )  
are known but to reconstruct the eigenenergies E, = h(p,  + 2 m , )  = O(1) the integers 

KO K 

Figure 1. Typical dependence of two eigenphases q, of a quantum map upon a perturbation 
parameter K that show a degeneracy in the integrable case (broken lines), which is avoided 
in the near-integrable case (full  lines). Eigenphases of initially uncoupled states ( K  < K,) 
and their successors after decoupling again ( K  > K,) are marked by dots and crosses. 
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I+- / -  / I- 
( a  I (61 (C 1 

Figure 2. Typical dependence of two energies E, = f i ( c p ,  +2an, )  of the effective Hamilton 
operator (2.4) upon a perturbation parameter K ( a )  for the integrable case (see figure 1, 
broken lines); ( b )  for the near-integrable case with continuation ofthe eigenphases (a = E /  f i  
( m o d 2 a )  (see figure 1, full lines), ( c )  with jumping over the avoided crossings of the 
eigenphases (see figure 1, dots and crosses). While the jumping of the phases gives a result 
( c )  that comes as close as possible to the integrable case, the exact continuation ( b )  gives 
completely wrong energies after the avoided level crossing has happened. 

ni = O( 1/ h )  have to be determined, too. The n i ,  which are the quantum numbers in 
this non-autonomous case, can be attached to each eigenstate unambiguously only for 
K = 0, where the energies Ei are actually known. But as long as each of the states 
I p i ( K  = 0)) possesses a successor (cpi(K f 0)) that decouples sufficiently from all other 
states the integers ni are still good quantum numbers. The correct way to determine 
these successors is, of course, by jumping over the avoided level crossings and adiabatic 
switching between them. 

As was shown in 3 4 exact adiabatic switching follows the eigenphases of the 
quantum map closely (as does the quantum Campbell-Baker-Hausdorff result). 
Numerical calculations work with a finite step size 6K by which K is increased from 
kick to kick during the switching process. To give a good approximation to the results 
of exact adiabatic switching this step size has to be chosen at least so small that the 
smallest details in the cp(K) curves with large curvature can be resolved. If these 
curves have two well separated size scales, one for structures far away from avoided 
level crossings and the other, much smaller one, for the avoided level crossings 

KO K 
Figure 3. Schematic dependence of two eigenphases upon a perturbation parameter K 
near an avoided crossing determined with the help of adiabatic switching with small step 
size (small dots) following the two hyperbolae (exact K dependence), and with the help 
of diabatic switching with larger step size (larger dots and crosses) jumping over the avoided 
crossing but nevertheless following the hyperbolae in the asymptotic regions quite closely. 
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themselves, then jumping over the near-degeneracies can be achieved by choosing a 
SK wtll between the two scales. As numerical examples in the next paragraph show, 
the Q ( K )  curves are then followed as closely as possible well away from the avoided 
level crossings, but these regions of near-degeneracy and strong coupling are ignored 
by jumping over them (see figure 3). As soon as the near-degeneracies show level 
splitting no longer small compared to the mean spacing the diabatic switching no 
longer gives reasonable results. Of course further decreasing SK leads back to exact 
adiabatic switching that works perfectly but does not jump over the near-degeneracies 
and is therefore of no value for the construction of an effective Hamilton operator 
possessing a classical limit. 

6. An example 

The difference between adiabatic and diabatic switching processes for quantum maps 
and their connection with the CBH formula will now be illustrated with a kicked spin 
dynamics (Frahm and Mikeska 1986, Nakamura et a1 1986) that has been investigated 
previously (Scharf 1988). It is generated by the unitary operator 

U ( K ,  K ' )  = exp( 5 J: )  exp( 5 J ; ) .  

This dynamics is non-integrable in the classical limit and shows a transition into global 
chaos for K = K ' z 2 . 5 .  

First one might ask how good an approximation are the eigenvalues gained via 
diabatic switching compared to the exact ones. For that question I chose j = 10 (21 
eigenvalues), determined the eigenvalues and eigenvectors of U (  K,  0 )  and then 
switched them from K ' = O  to K ' =  K in N steps as indicated by (4.8). It turns out 
that for N = 1000 the largest and the mean relative errors are 0.01 and 0.001 respectively 
for K = 1, and 0.1 and 0.02 respectively for K = 2. Step number N = 1000 still means 
diabatic switching with jumping over near-degeneracies as shown in figure 3. Further 
increase of N first leads to larger errors (for N =8000 and K = 2  the relative errors 
are 1.0 and 0.2, respectively) until for even larger N the switching becomes adiabatic 
and follows the level dynamics closely without jumping. 

A look at the classical maps explains why this happens (Haake et al 1987a, Scharf 
1988). For K = 1 the map is near-integrable and the eigenvalues of U can be determined 
semiclassically by torus quantisation. For K = 2 the classical map shows the instability 
of two primary resonances and the eigenvalues of the quantum map start to repel each 
other appreciably (Frahm and Mikeska 1986, Haake et al 1987b). For K = 3  the 
classical map is globally chaotic and the quantum map shows strong level repulsion 
leading to splittings of the order of the mean level spacing. 

As the diabatic switching gives approximations 4, and 14,) for both the eigenphases 
Q ,  and the eigenvectors Iq,) of U an approximation fierf to the effective Hamilton 
operator He,  (2.4) can be constructed: 

n 

with the energies E,, = h$, which are typically of order 1 because the phases $ are of 
order j = l / h ,  in strong contrast to the exact phases which are only known modulo 2x. 
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To compare Herr and Gefr with the classical phase space structures, expectation 
values with angular momentum coherent states 16, c p ;  j )  are calculated (see Perelomov 
(1986) for an introduction) with spherical angles 6 and cp 

(6.3) 

The effective Hamilton operators and their expectation values (6.3) are j dependent. 
From the simple example ( 2 . 8 )  one expects that He,(& c p ;  j )  will not have a smooth 
classical limit neither for eigenphases restricted to the interval [0 ,27~)  nor for continu- 
ation of the eigenphases upon increasing K ' ,  because phases (of the same exp(i.irJ,) 
eigenspace) repel each other, as was the case in the example (2.8). For finite j the 
function He,,( 0, c p ;  j )  will already show strong oscillations perpendicular to the phase 

X X 

-1.0 -0.5 0 0.5 1 .o 
Y 

-10 - 0 5  0 0 5  10 
Y 

Figure 4. (a ,  c )  Lines of constant He, ,=  H,,, given by the CBH formula (3.1) up to O ( K 7 )  
(for details, see Scharf (1988)) compared-with (b ,  d )  lines of constant expectation values 
of the diabatically ( N  = 1000) gained He, ,  ( j  = 10) for (a ,  b )  K = 1 on the northern 
hemisphere ( z >  0) and (c, d )  around the equator (x  > 0 ) .  Although-h = l / j  = 0.1 is still 
large the classical quasi-integral HCRH and its diabatic counterpiece He& = 10) resemble 
each other strongly. 
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space curves Heff( 8, cp; j )  = E, although these curves will follow KAM tori closely in 
the near-integrable case. But the strong oscillations make it increasingly difficult for 
growing j to use these curves as approximate integral curves of the classical map. 

In contrast to He,  we expect fief,- to possess a smooth classical limit in the 
near-integrable case and therefore fieff( 8, cp; j )  to be a well behaved approximate 
integral of the classical map for large enough j .  It turns out that j = 10 is already large 
enough to see the difference between Heff( 8, cp; j )  and fieff( 6, cp; j )  and to see that the 
latter is a good approximate integral of the classical map. 

For K = 1 and K = 2 phase space pictures of the classical map were already given 
and an approximate effective Hamiltonian HCBH( 6, cp) was constructed via the CBH 

expansion (Scharf 1988). It was found to be a good approximate integral of the 
classical map in the smooth parts of the phase space near the primary resonances. In 
the following picture the diabatically gained Gefr(6, cp;j = 10) and HCBH(8, cp) are 
compared for K = 1 (see figure 4) and K = 2 (see figures 5 and 6) on the spherical 
phase space with Cartesian coordinates x, y and z for an optimal choice for the number 
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Figure 5. The same as figure 4 for K = 2. Now the diabatic approximation starts to fail 
near the poles x = y = 0 which are marginally stable classically. Near the equator the 
resemblance between H,,, and Hefr(j = 10) is stronger and the results should be compared 
with the classical iteration (see figure 6 ) .  
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Figure 6. Classical iteration for K = 2 around the 
equator (x  > 0), to be compared with figure S( c, d ) .  

Figure 7. Lines of constant expectation values of the 
exact Heff(j = 10) with eigenenergies determined 
from the eigenphases of U restricted to [0 ,2v )  for 
K = 2  on the northern hemisphere ( z>O) .  Notice 
that there is almost no resemblance with the diabatic 
and CBH results (see figure S(a, b ) ) .  

of steps ( N  = 1000). The conformity is convincing for K = 1 and satisfactory for K = 2 
besides the polar regions ( 8  = 0 and 8 = T). Further increase of the step number N 
in the diabatic process leads to worse results, as was already mentioned for the 
eigenvalues. 

These results have to be contrasted with pictures for Zfeff(  8,cp; j = 10) constructed 
from the eigenvectors and eigenvalues of U, the latter ones either confined to [0,27r) 
or continued upon increasing K ' .  As soon as these eigenvalues disagree clearly with 
the diabatically gained ones the phase space functions He,,(@, cp; j )  show strong 
oscillations that lead to numerical artefacts in the contour plots Eleff( 8, 9; j )  = E for 
finite j (see figure 7 )  and to the non-existence of a smooth classical limit. 

7. Discussion 

In this paper I have investigated how several methods for calculating effective Hamil- 
tonians and Hamilton operators for classical and quantum maps, respectively, compare 
with each other. It was shown that exact diagonalisation of the unitary quantum 
propagator, the introduced level dynamics, adiabatic switching and the Campbell- 
Baker-Hausdorff construction lead to the same effective Hamilton operator, which 
does not possess a smooth classical limit generically, even in the near-integrable case 
(first h+0,  then perturbation+O). On the other hand numerical results show that 
diabatic switching may lead to Hamilton operators that do possess a smooth classical 
limit. These smooth Hamiltonians are approximate integrals of the classical maps and 
correspond to Hamiltonians constructed with the classical Campbell-Baker-Hausdorff 
formula evaluated asymptotically in the perturbation parameter for near-integrable 
classical maps. As was briefly mentioned adiabatic switching of the near-integrable 
classical standard map also leads to approximate phase space .invariants. 
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If there are no exact accidental degeneracies in the quantum spectrum then the 
C B H  formula leads to the exact effective Hamilton operator, which may also be 
constructed from the exact eigenvectors and  the continued eigenphases. In particular 
the CBH formula converges in the quantum case. In strong contrast to that, the classical 
CBH formula can be used in the non-integrable case only asymptotically for small 
perturbations. The reason seems to be the same as in the case of normal forms, which 
may be convergent in the quantum case but divergent in the classical case (Robnik 
1986). For h # 0 accidental degeneracies leading to vanishing denominators are sup- 
pressed. Then the quantum normal form and the quantum C B H  expression converge 
but d o  not possess a classical limit. For h = O  resonances are not suppressed in both 
cases and the results are only asymptotic in the perturbation. That resonances really 
show up  for diabatic switching can be seen in figure 3: diabatically constructed 
eigenphases cross. As the number of avoided or  real level crossings in a fixed perturba- 
tion interval grows like upon decreasing h (level density times level velocity= 
O ( j ’ )  = O ( l / h 2 ) )  then for the mentioned kicked angular momentum dynamics the 
resonances grow dense along the real perturbation strength axis. In the classical limit 
the perturbation expansions, whether CBH or normal forms, therefore diverge but may 
be still useful asymptotically. 

As the effective Hamiltonian of a classical map generates a continous phase space 
flow, which is only stroboscopically equivalent with the map, it cannot generate n-cycles 
for n > 1. Therefore one has to take n-fold iterates o f the  classical map making n-cycles 
to fixed points in order to construct effective Hamiltonians. The same trick is also 
used in the quantum case. Actually the unitary propagator in the example (4.8) is the 
square of a previously investigated operator (Nakamura et a1 1986). With this method 
approximate integrals of classical maps may be constructed near n-cycles. 
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